Earth Science Enterprise Technology Planning Workshop

Intelligent Distributed Spacecraft Infrastructure

Mark Schoeberl (Co-Chair) - GSFC
John Bristow (Co-Chair) - GSFC
Carol Raymond (Facilitator) - JPL

23-24 January 2001
Agenda

<table>
<thead>
<tr>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Satellite Challenges/Sensorweb</td>
<td>M. Schoeberl - GSFC</td>
</tr>
<tr>
<td>Miniature GPS-based multi-function</td>
<td>T. Yunck - JPL</td>
</tr>
<tr>
<td>Instrument for Autonomy of Spacecraft</td>
<td>W. Wiscombe - GSFC</td>
</tr>
<tr>
<td>Constellations Sounding</td>
<td>D. Folta - GSFC</td>
</tr>
<tr>
<td>Leonardo</td>
<td>S. Madsen - JPL</td>
</tr>
<tr>
<td>Control Architecture</td>
<td>R. Carpenter - GSFC</td>
</tr>
<tr>
<td>Control of Distributed Spacecraft</td>
<td>J. How - MIT</td>
</tr>
<tr>
<td>Remote Agent</td>
<td>R. Washington - ARC</td>
</tr>
<tr>
<td>Model for Planning and Scheduling</td>
<td>R. Morris - ARC</td>
</tr>
<tr>
<td>Observations for Many Satellites Simultaneously</td>
<td>A. Barrett - JPL</td>
</tr>
<tr>
<td>Constellation Operations</td>
<td>M. Campbell - U.Wash</td>
</tr>
<tr>
<td>Formation Planning, Control, and Reconfiguration Algorithms</td>
<td>Srinivasan - JPL</td>
</tr>
<tr>
<td>Agent-based Autonomy</td>
<td>P. Stadter - JHU/APL</td>
</tr>
<tr>
<td>GPS/Formation Flying</td>
<td>T. Balch - CMU</td>
</tr>
<tr>
<td>Communications</td>
<td>T. Tierno - Honeywell</td>
</tr>
<tr>
<td>Airborne testbed</td>
<td>J. Harris - Honeywell</td>
</tr>
</tbody>
</table>
Participants

- Chandra Mirchanani LM/GSFC
- John Bristow GSFC
- David Folta GSFC
- David Breskman Lockheed
- Jonathan How MIT
- Brian Williams MIT
- Chris Kucera Booze Allen&Hamilton
- James Paul House SC
- George Davis Commerce One
- Derek Surka Princeton Satellite
- Jorge Tierno Honeywell
- Ed Howard NOAA
- Tucker Balch CMU
- John Carl Adams Lockheed
- Michael Huhns U of SC
- Costas Tsatsoulis U of KS
- Jon Agre JPL
- Soren Madsen JPL
- Victor Lesser U of MA
- Les Gasser U of IL
- Mark Campbell U of WA
- Pete Klupor AFRLVS
- Tony Barrett JPL
- Reid Simmons CMU
- Rich Washington AMES
- Andrew Howard USC
- Daniel S. Katz JPL
- Stephen J. Talabac Commerce One
- Patrick A. Stadtter JHU/APL
- Wayne Devereux Veridian Eng.
- Kurt R. Smith GSFC/ESTO
- Sam Hollander NRL
- Joan Dunham CSC/GSFC
- Robert Morris NASA/Ames
- Tom Yunck JPL
- Robert B. Lee III LaRC
Intelligent distributed spacecraft systems

Vision:
A spatially distributed intelligent network of multiple space assets, collaborating as a collective unit, exhibits a common system-wide capability to accomplish shared objectives

Goal:
Develop and adopt advanced technologies for distributed spacecraft missions that enable New Earth science measurement concepts
Component Technologies

Communications
- Acquisition, tracking and pointing algorithms
- Protocols, networking
- Ranging
- Command & control
- Data handling & processing

Micro/Nano Spacecraft
- Advanced solar arrays/batteries
- Micro star trackers
- Micropropulsion
- Mission design/testing tools

Autonomy
- High level planning & scheduling
- Fault Diagnosis and Recovery
- Command & control
- Low level navigation & pointing
- Instrument control
- Science data processing
- Distributed control
 - Relative navigation
 - Collision avoidance
 - Collective pointing
 - Collective Planning

Measurement Approach
- Synthetic Aperture Radar
- Multi-angle radiometry
- GPS Sounding
- Hyperspectral Imaging
- Solar Occultation
- Microwave crosslinks

Science Needs
High Spatial Resolution:
- Land Imaging
- Multiple-Angle Viewing
- Surface Hydrology & Precipitation
- Ocean Salinity
- Vegetation Recovery
- Atmospheric Chemistry
- Surface Deformation
- Tropospheric water vapor
- Event-driven data collection

Leonardo, an advanced concept using a virtual platform approach to measure the bi-directional reflectance distribution function.

ATOMS, a constellation to measure atmospheric temperature and tropospheric water vapor using GPS sounding and microwave crosslinks.
Identified two major classes of distributed spacecraft science missions:

- **“Accretionary” formations**
 - Opportunistic, passive trains (at present)
 - Require modular, open architecture to allow flexibility in adding and replacing formation components

- **Deliberate multi-spacecraft architecture**
 - Exhibit many formation control needs
 > Loose (GPM)
 > Virtual platform (Leonardo)
 > Precision formation flying (SAR/GRACE)
 - **Swarms**
 > Radio Occultation
 > Magnetic fields

Identified some future science goals:

- Multi- or tandem-spacecraft Synthetic Aperture Radar
- Virtual Platform for radiative flux (Leonardo)
- Loose clusters for coverage (GPM)
- Radio Occultation GPS constellation for atmospheric temperature and moisture (ATOMS)
- Dedicated swarms for high temporal resolution measurements
Summary- Notional Missions

Tandem SAR: 2-5 spacecraft (homogeneous)
100 kg class
baseline tolerance to 10-50m
relative pointing 0.02° (X-band) 0.2° (L-band)
position 0.1-1m

Radio Occultation GPS:
 6-100 spacecraft (homogeneous)
 30 kg class

Leonardo: 6-12 spacecraft (heterogeneous)
30-100 kg class
pointing control/knowledge to $0.5^\circ/0.1^\circ$

Global Precipitation: 3-9 spacecraft (formation)
1 spacecraft (core)
50 kg/150 kg
Science and measurement requirements:

• High Spatial/Temporal Resolution:
 – Hyperspectral Land Imaging
 – Severe Storm Prediction
 – Surface Hydrology & Precipitation
 – Tectonic Hazard Prediction
 – Ozone Monitoring
 – Atmospheric water vapor

• Multiple Angle Viewing
 – Bidirectional Reflectance Distribution Function (BRDF)
 – Vector surface deformation (hazard prediction)

Relevance to Future ESE Mission

• Global Precipitation Mission
• Leonardo (BRDF measurement concept)
• Soil Moisture and Ocean Salinity
• Time-Dependent Gravity Field Mapping
• Vegetation Recovery
• Topography and Surface Deformation
• GPS Atmospheric Sounding
• Constellation
• Sensorweb Vision

Description of Technology

Autonomy
• Planning & Scheduling
• Navigation & Pointing
• Intelligent Execution
• Reconfiguration and control

Sensor Webs
• Science event alert
• Collective Pointing

Communications
• Ad hoc networking
• Protocols
• Commanding & data handling

• Micro/Nano Spacecraft
• Micro star trackers
• Advanced power systems
• Multi-frequency crosslinks

Illustration of Technology
State of the Art for Intelligent Distributed Spacecraft Infrastructure (Autonomy)

State of the art for the Technology

Major Technology Elements and Current TRL

- Component Autonomy
 - Deployment
 - Maneuver Planning & Execution (5)
 - Planning and Scheduling (5)
 - Fault Detection and Isolation (5)
 - Spacecraft Pointing
 - Safehold

Technology Development
- Capability Needs
 - Develop high level autonomy that enables multiple spacecraft missions in cost and capability
 - Collective planning and scheduling
 - Ad hoc networking of satellites
 - Collective pointing
 - Relative navigation with collision avoidance
 - Collective fault detection isolation and recovery
State of the Art for Intelligent Distributed Spacecraft Infrastructure (Microspacecraft)

Nanosats <25 kg
25 kg< Microsats <100 kg (50 watts)

Major Technology Elements and Current TRL
- Autonomous Formation Flying for constellation autonomy -TRL 5
- Multifunctional Structures
- Miniature low-power X-band transponder
- Autonomous ground operations
- MEMS attitude adjustment
- Li-Ion batteries
- Low impulse bit thrusters

Technology Development
- Passive or cell phone communication
- Strongly integrated technology
- Master/Slave control
- Micro star trackers
- Micro reaction wheels
- Micro propulsion
- Advanced solar arrays
- High density energy storage
Validation Plans for Intelligent Distributed Spacecraft Infrastructure

Flight Validation Rationale
- Major Implementation Shift
 - New spacecraft commanding paradigm
 - Build confidence and provide path to spacecraft fleets
- Validation of the most critical subsystem is possible only from space:
 - Behavior
 - Collective operation of independent spacecraft
 - Effects of orbital dynamics on formation control and collective operation
 - Virtual platform demonstration

Expected benefits
- Enables new science
 - Supports simultaneous multiple-angle viewing
 - Enables co-observing
 - Detect and characterize events that occur on Earth and its surrounding atmosphere
 - Manage ground contacts of multiple close spacecraft
- Benefits Operations
 - Reduces Mission Costs
 - Supports lights out autonomy
 - Enables “fire and forget” scenarios
 - Uniform and consistent commanding interface
 - Easier verification of command sequences
 - Eliminates most upload errors
 - Enables executing complex multiple spacecraft mission sequences with less skilled ground-based operators

Top-Level Development and Flight Schedule
- Automated subsystems
 - Flight validation in 2004/05
- Fully integrated autonomy in flight software
 - Flight validation in 2006
- Ready for science mission launch in 2009

Accommodation Requirements
- Processing power
- Memory
Validation Plans for Intelligent Distributed Spacecraft Infrastructure (Micro/Nanospacecraft)

Description/Justification of Flight Validation
• 2 spacecraft cooperating (or 1 s/c in preplanned and duplexed operations with existing spacecraft)
 – Active and passive communications
 – Cooperative pointing
 – Adaptive reconfiguration
 – Crosslinks

• Major Implementation Shift
 – New manufacturing paradigm

• Validation of the system-level interactions is possible only from space:
 – Pointing
 – Slave operation of dependent spacecraft
 – Effects of orbital dynamics on formation control and collective operation
 – Virtual platform demonstration

Accommodation Requirements
• Means to measure pointing accuracy and orbit control
• Possible cooperating non-NMP spacecraft

Expected Benefits
• Low-cost reliable platforms for multi-spacecraft architectures
• Validation of manufacturing and testing paradigms
• Performance model of position, attitude and pointing knowledge and control of cooperating, and/or hierarchical constellation

Top-Level Development and Flight Schedule
• Refine needs of flight validation 2002-2003
 – Choose validation flight experiment

• Identify partners to leverage existing spacecraft as cooperating members

• NMP flight validation in 2006

• Support science mission in 2009
Autonomy Roadmap for Intelligent Distributed Spacecraft Infrastructure

Concept: Distributed Network of Intelligent Satellites Operating Collectively

- **Science Driver:** Enables High Spatial-Temporal Resolution Data Collection
 - Characterizing and Understanding Complex Dynamic Processes
 - Event Driven Science Data Collection

- **Technology Drivers**
 - Fleet Autonomy
 - Ad Hoc On-Orbit Networking
 - Reduced Weight, Volume and Cost
 - Increased Reliability
 - Upgrading Instruments by Replacing Elements of Fleet
 - Event Alert Capability

- **Validation Rationale**
 - Multiple spacecraft behavior and flight dynamics effects can be demonstrated only in space
 - Validation of collective pointing and maneuvering is possible only from space over very large ranges
 - Collaborative network creation and inter-spacecraft communication can only be demonstrated in space

Ground Based Automation
- Planning & Scheduling in the MOC
- Automated Product Generation

Remote Agent On-board Autonomy Experiment
- ACS Safehold
- Onboard OD
- Celestial Nav
- S/C pointing
- Maneuver Planning & Execution

On-board Autonomy
- Automated Subsystems
 - ACS Safehold
 - Onboard OD
 - Celestial Nav
 - S/C pointing
 - Deployment
 - Instrument Pointing
 - Maneuver Planning & Execution

On-board Autonomy
- High-Level Spacecraft Autonomy

Validation Flight
- Full Integration of Autonomy in Flight s/w
- Demonstrate onboard fleet planning, resource allocation and scheduling
- Fault detection/isolation & Recovery
- Collective Pointing & Navigation
- Collision Avoidance
- Ad hoc Networking

Science Mission
- SAR w/ Communications
- Co-observing
- Multi-Angle Observing

Fiscal Year
- 01
- 02
- 03
- 04
- 05
- 06
- 07
- 08
Validation Plans for Intelligent Distributed Spacecraft Infrastructure - On-orbit Autonomy Testbed (Part 1 of 2)

Problem Statement:
Multiple approaches to autonomy exist and multiple elements of spacecraft autonomy require flight validation to address paradigm shifts, verify behavior, develop confidence and ensure safety.

Examples include:
- **Autonomy required for single and distributed spacecraft:**
 - Fully integrated autonomy in flight software
 - Providing a reusable core for future missions
 - Fault detection and recovery
 - Event detection and notification
 - Planning and scheduling with resource allocation
 - Adaptive planning/scheduling

- **Autonomy required for distributed spacecraft only:**
 - Formation control
 - Collective pointing of separate spacecraft
 - Communications, Ad-hoc networking of space assets
 - Collision avoidance
 - Fault Detection and correction across the fleet
 - Cooperative planning and schedule
Proposed Path for Development:

- **On-orbit testbed environment which provides hardware-in-the-loop 6-DOF Interactions in Microgravity**
 - Enables direct comparisons of multiple approaches to autonomy for example:
 - Fuzzy Logic Control (GSFC)
 - Remote Agent (Ames/JPL)
 - Supports Development and Validation of Autonomous Subsystems
 - S/C Pointing, Instrument Pointing, Formation Navigation, OD, etc.
 - Provides Environment for Multiple S/C Development/Validation

- **Potential Environments**
 - **Single S/C**
 - Advantages - True Space Environment, 6 DOF
 - Drawbacks - Expensive, No Fleet Validation, Cannot Refurbish, Difficult to do Multiple Experiments
 - **Multiple S/C**
 - Advantages - True “Fleet” Test Environment, 6 DOF
 - Drawbacks - Very Expensive, Cannot Refurbish, Timeline Could Be Short for Multiple Experiments
 - **MIT Spheres Program offers a testbed on ISS that provides for refurbishment and customization**
 - Advantages - Affordable, Multiple Vehicle, Can Reconfigure, Refuel, Refurbish, Specialized Equipment Could be Tested, Unlimited Timeline
 - Drawbacks - Still Pressurized Environment, Not True Spacecraft
Example: MIT Spheres Program Benefits

Leverage ISS-based free-flyers already under development:
- Personal Satellite Assistant (ARC; in development)
- AERcam (JSC; Shuttle flight heritage)
- SPHERES (MIT; already manifested on ISS 10/02 launch)

Offers Flexibility:
Autonomy and control researchers could propose experiments and flyoffs
Uploadable algorithms
ISS Crew act as proxy researchers
 • Refurbish and upgrade resources
 • Virtual presence for researchers